Saver 保存读取

保存

import tensorflow as tf
import numpy as np

## Save to file
# remember to define the same dtype and shape when restore
W = tf.Variable([[1,2,3],[3,4,5]], dtype=tf.float32, name='weights')
b = tf.Variable([[1,2,3]], dtype=tf.float32, name='biases')


saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    save_path = saver.save(sess, "my_net/save_net.ckpt")
    print("Save to path: ", save_path)

"""    
Save to path:  my_net/save_net.ckpt
"""

提取

# 先建立 W, b 的容器

W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, name="weights")

b = tf.Variable(np.arange(3).reshape((1, 3)), dtype=tf.float32, name="biases")

# 这里不需要初始化步骤 init= tf.initialize_all_variables()

saver = tf.train.Saver()

with tf.Session() as sess:

"""

weights: [[ 1. 2. 3.]

biases: [[ 1. 2. 3.]]

"""

Last updated

Was this helpful?