#loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
# axis=1))
loss = tf.losses.mean_squared_error(tf_y, output)
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
# training
ts_,loss_=sess.run([train_step,loss], feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
print(i,loss_)