#loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),# axis=1))loss = tf.losses.mean_squared_error(tf_y, output)train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)init = tf.global_variables_initializer()sess = tf.Session()sess.run(init)for i inrange(1000):# training ts_,loss_=sess.run([train_step,loss], feed_dict={xs: x_data, ys: y_data})if i %50==0:# to see the step improvementprint(i,loss_)