DeepLearning.ai深度学习课程笔记
search
⌘Ctrlk
DeepLearning.ai深度学习课程笔记
  • Introduction
  • 第一门课 神经网络和深度学习(Neural-Networks-and-Deep-Learning)
  • 第二门课 改善深层神经网络:超参数调试、 正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regulariza
    • 第二门课 改善深层神经网络:超参数调试、正则化以及优化(Improving Deep Neural Networks:Hyperparameter tuning, Regularization and
  • 第三门课 结构化机器学习项目(Structuring Machine Learning Projects)
    • 第三门课 结构化机器学习项目(Structuring Machine Learning Projects)
  • 第四门课 卷积神经网络(Convolutional Neural Networks)
    • 第四门课 卷积神经网络(Convolutional Neural Networks)
      • 第一周 卷积神经网络(Foundations of Convolutional Neural Networks)
        • 1.1 计算机视觉(Computer vision)
        • 1.2 边缘检测示例(Edge detection example)
        • 1.3 更多边缘检测内容(More edge detection)
        • 1.4 Padding
        • 1.5 卷积步长(Strided convolutions)
        • 1.6 三维卷积(Convolutions over volumes)
        • 1.7 单层卷积网络(One layer of a convolutional network)
        • 1.8 简单卷积网络示例(A simple convolution network example)
        • 1.9 池化层(Pooling layers)
        • 1.10 卷积神经网络示例(Convolutional neural network example)
        • 1.11 为什么使用卷积?(Why convolutions?)
        • Convolution model Step by Step
        • Convolutional Neural Networks: Application
        • cnn_utils
      • 第二周 深度卷积网络:实例探究(Deep convolutional models: case studies)
      • 第三周 目标检测(Object detection)
      • 第四周 特殊应用:人脸识别和神经风格转换(Special applications: Face recognition &Neural style transfer)
  • 第五门课 序列模型(Sequence Models)
    • 第五门课 序列模型(Sequence Models)
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. 第四门课 卷积神经网络(Convolutional Neural Networks)chevron-right
  2. 第四门课 卷积神经网络(Convolutional Neural Networks)

第一周 卷积神经网络(Foundations of Convolutional Neural Networks)

1.1 计算机视觉(Computer vision)chevron-right1.2 边缘检测示例(Edge detection example)chevron-right1.3 更多边缘检测内容(More edge detection)chevron-right1.4 Paddingchevron-right1.5 卷积步长(Strided convolutions)chevron-right1.6 三维卷积(Convolutions over volumes)chevron-right1.7 单层卷积网络(One layer of a convolutional network)chevron-right1.8 简单卷积网络示例(A simple convolution network example)chevron-right1.9 池化层(Pooling layers)chevron-right1.10 卷积神经网络示例(Convolutional neural network example)chevron-right1.11 为什么使用卷积?(Why convolutions?)chevron-rightConvolution model Step by Stepchevron-rightConvolutional Neural Networks: Applicationchevron-rightcnn_utilschevron-right
Previous第四门课 卷积神经网络(Convolutional Neural Networks)chevron-leftNext1.1 计算机视觉(Computer vision)chevron-right

Last updated 6 years ago