DeepLearning.ai深度学习课程笔记
search
Ctrlk
DeepLearning.ai深度学习课程笔记
  • Introduction
  • 第一门课 神经网络和深度学习(Neural-Networks-and-Deep-Learning)
  • 第二门课 改善深层神经网络:超参数调试、 正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regulariza
    • 第二门课 改善深层神经网络:超参数调试、正则化以及优化(Improving Deep Neural Networks:Hyperparameter tuning, Regularization and
  • 第三门课 结构化机器学习项目(Structuring Machine Learning Projects)
    • 第三门课 结构化机器学习项目(Structuring Machine Learning Projects)
  • 第四门课 卷积神经网络(Convolutional Neural Networks)
    • 第四门课 卷积神经网络(Convolutional Neural Networks)
  • 第五门课 序列模型(Sequence Models)
    • 第五门课 序列模型(Sequence Models)
      • 第一周 循环序列模型(Recurrent Neural Networks)
        • 1.1 为什么选择序列模型?(Why Sequence Models?)
        • 1.2 数学符号(Notation)
        • 1.3 循环神经网络模型(Recurrent Neural Network Model)
        • 1.4 通过时间的反向传播(Backpropagation through time)
        • 1.5 不同类型的循环神经网络(Different types of RNNs)
        • 1.6 语言模型和序列生成(Language model and sequence generation)
        • 1.7 对新序列采样(Sampling novel sequences)
        • 1.8 循环神经网络的梯度消失(Vanishing gradients with RNNs)
        • 1.9 GRU单元(Gated Recurrent Unit(GRU))
        • 1.10 长短期记忆(LSTM(long short term memory)unit)
        • 1.11 双向循环神经网络(Bidirectional RNN)
        • 1.12 深层循环神经网络(Deep RNNs)
        • Building your Recurrent Neural Network
        • rnn_utils.py
        • Dinosaurus Island -- Character level language model final
        • utils.py
        • shakespeare_utils.py
        • Improvise a Jazz Solo with an LSTM Network
      • 第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)
      • 第三周 序列模型和注意力机制(Sequence models & Attention mechanism)
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. 第五门课 序列模型(Sequence Models)chevron-right
  2. 第五门课 序列模型(Sequence Models)

第一周 循环序列模型(Recurrent Neural Networks)

1.1 为什么选择序列模型?(Why Sequence Models?)chevron-right1.2 数学符号(Notation)chevron-right1.3 循环神经网络模型(Recurrent Neural Network Model)chevron-right1.4 通过时间的反向传播(Backpropagation through time)chevron-right1.5 不同类型的循环神经网络(Different types of RNNs)chevron-right1.6 语言模型和序列生成(Language model and sequence generation)chevron-right1.7 对新序列采样(Sampling novel sequences)chevron-right1.8 循环神经网络的梯度消失(Vanishing gradients with RNNs)chevron-right1.9 GRU单元(Gated Recurrent Unit(GRU))chevron-right1.10 长短期记忆(LSTM(long short term memory)unit)chevron-right1.11 双向循环神经网络(Bidirectional RNN)chevron-right1.12 深层循环神经网络(Deep RNNs)chevron-rightBuilding your Recurrent Neural Networkchevron-rightrnn_utils.pychevron-rightDinosaurus Island -- Character level language model finalchevron-rightutils.pychevron-rightshakespeare_utils.pychevron-rightImprovise a Jazz Solo with an LSTM Networkchevron-right
Previous第五门课 序列模型(Sequence Models)chevron-leftNext1.1 为什么选择序列模型?(Why Sequence Models?)chevron-right

Last updated 6 years ago