DeepLearning.ai深度学习课程笔记
search
⌘Ctrlk
DeepLearning.ai深度学习课程笔记
  • Introduction
  • 第一门课 神经网络和深度学习(Neural-Networks-and-Deep-Learning)
    • 第一周:深度学习引言(Introduction to Deep Learning)
    • 第二周:神经网络的编程基础(Basics of Neural Network programming)
    • 第三周:浅层神经网络(Shallow neural networks)
      • 3.1 神经网络概述(Neural Network Overview)
      • 3.2 神经网络的表示(Neural Network Representation )
      • 3.3 计算一个神经网络的输出(Computing a Neural Network's output )
      • 3.4 多样本向量化(Vectorizing across multiple examples )
      • 3.5 激活函数(Activation functions)
      • 3.6 为什么需要( 非线性激活函数?(why need a nonlinear activation function?)
      • 3.7 激活函数的导数(Derivatives of activation functions )
      • 3.8 神经网络的梯度下降(Gradient descent for neural networks)
      • 3.9 (选修)直观理解反向传播(Backpropagation intuition )
      • 3.10 随机初始化(Random+Initialization)
      • Planar data classification with one hidden layer
      • planar_utils.py
      • testCases.py
    • 第四周:深层神经网络(Deep Neural Networks)
  • 第二门课 改善深层神经网络:超参数调试、 正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regulariza
    • 第二门课 改善深层神经网络:超参数调试、正则化以及优化(Improving Deep Neural Networks:Hyperparameter tuning, Regularization and
  • 第三门课 结构化机器学习项目(Structuring Machine Learning Projects)
    • 第三门课 结构化机器学习项目(Structuring Machine Learning Projects)
  • 第四门课 卷积神经网络(Convolutional Neural Networks)
    • 第四门课 卷积神经网络(Convolutional Neural Networks)
  • 第五门课 序列模型(Sequence Models)
    • 第五门课 序列模型(Sequence Models)
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. 第一门课 神经网络和深度学习(Neural-Networks-and-Deep-Learning)

第三周:浅层神经网络(Shallow neural networks)

3.1 神经网络概述(Neural Network Overview)chevron-right3.2 神经网络的表示(Neural Network Representation )chevron-right3.3 计算一个神经网络的输出(Computing a Neural Network's output )chevron-right3.4 多样本向量化(Vectorizing across multiple examples )chevron-right3.5 激活函数(Activation functions)chevron-right3.6 为什么需要( 非线性激活函数?(why need a nonlinear activation function?)chevron-right3.7 激活函数的导数(Derivatives of activation functions )chevron-right3.8 神经网络的梯度下降(Gradient descent for neural networks)chevron-right3.9 (选修)直观理解反向传播(Backpropagation intuition )chevron-right3.10 随机初始化(Random+Initialization)chevron-rightPlanar data classification with one hidden layerchevron-rightplanar_utils.pychevron-righttestCases.pychevron-right
Previouslr_utils.pychevron-leftNext3.1 神经网络概述(Neural Network Overview)chevron-right

Last updated 6 years ago